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1 Introduction

The following is adapted from module five of Prof. Jason Roy’s online Coursera course
on causal inference https://www.coursera.org/learn/crash-course-in-causality.1 I wanted to
review the basics of causal inference for myself. This is part five of five.

2 Instrumental variables

Imagine we have the usual confounder that annoyingly gets in the way of a causal relation-
ship: Z → Y and Z ← C → Y . We now have tools to address this, namely, to randomization
to get rid of Z ← C. But what if we also have some unmeasured confounder Z ← U → Y ? Or
what about a situation where it would be unethical to randomize treatment Z? For example,
if Z is whether pregnant mothers smoke and Y is the birth weight of the baby, we would not
be able to randomize pregnant mothers to smoke or not smoke. In these cases we cannot
marginalize over all confounders via matching, IPTW, or other methods.

This is where the idea of instrumental variables comes in. We can introduce some instru-
mental variable V that affects the treatment V → Z (above relationships still assumed). We
can think of V as an encouragement; we can encourage pregnant mothers who do smoke to
either receive encouragement to stop smoking, or to just receive the usual care they would
normally receive without the encouragement. Under an intention to treat analysis we can
then estimate E[Y (V = 1)] − E[Y (V = 0)] which would be of interest as it is the causal
effect of encouragement. Thus, we are estimating an effect based on randomization of the
encouragement.

Note that the unmeasured confounder still exists, but there is some hope of estimating
a causal effect since we can have some sort of randomization of treatment. Also note that
this is not the causal effect of the smoking treatment Z itself.

Instrumental variables have an exclusion restriction assumption, which is that V affects
Z but does not directly affect Y . Z also can not affect U . This assumption can be a problem
for example if a randomized trial is not blinded: participants’ knowledge of their treatment
status could affect their outcome. Unfortunately this is an assumption that we can’t directly
check with data, much like the no unmeasured confounders assumption. There is a degree
of faith and subject matter knowledge that go into these assumptions.
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We want instrumental variables that are strong i.e., highly predictive of treatment. To
do this we would have to estimate the proportion of compliers (discussed below). Weak in-
strumental variables lead to very high variance (confidence intervals wide) since the effective
sample size would be very small.

2.1 Randomized trials with noncompliance

For the above relationships, notice that individuals who receive V = 1 may not necessarily
receive the treatment Z that corresponds to not smoking, i.e., there is noncompliance. When
this occurs, our randomized trial starts to look like an observational study since there may be
potential confounders based on treatment received, i.e., U or C in the above may confound
the relationship between Z and Y if for example older pregnant women are less likely to take
the treatment and also have lower birthweight of babies.

Let’s imagine each individual has two potential values of treatment. First, there is
the treatment they would receive if V = 1 and second there is the treatment they would
receive if V = 0, which we could denote as ZV =1 and ZV =0 respectively. We can then define
the causal effect of treatment assignment on treatment received E[Z1

− Z0
]. This is the

proportion treated if everyone had been assigned treatment minus the proportion treated
if no one had been assigned treatment. If there is perfect compliance this is just equal
to 1. This is generally estimable from the observed data since we have randomized V , as
E[Z1

] = E[Z ∣V = 1] and E[Z0
] = E[Z ∣V = 0].

We can also estimate E[Y (V = 1)] - E[Y (V = 0)] since E[Y (V = 1)] = E[Y ∣V = 1]
and E[Y (V = 0)] = E[Y ∣V = 0]. But what about the causal effect of received treatment on
outcome?

2.2 Compliance classes

We can also label people depending on their compliace: if Z1 and Z0 are both 0, these are
never-takers, if Z1

= 1 and Z0
= 0 these are compliers, if Z1

= 0 and Z0
= 1 these are defiers,

if Z1
= 1 and Z0

= 1 these are always-takers. Compliers and defiers actually have random
assignment, so we can learn something about effect of treatment. This is not the case for
never-takers and always-takers.

With instrumental variables we try to estimate a local average treatment effect rather
than an average causal effect, such as E[Y (V = 1)∣Z1

= 1, Z0
= 0] −E[Y (V = 0)∣Z1

= 1, Z0
=

0], or the causal effect in the same population of compliers of assigning the encouragement
V , which is equal to E[Y (Z = 1)∣Z1

= 1, Z0
= 0] −E[Y (Z = 0)∣Z1

= 1, Z0
= 0]. This is known

as the complier average causal effect (CACE). Any time we contrast outcomes in the same
subpopulation of people we have a valid causal effect.

In observed data, we unfortunately won’t identify a person’s compliance class completely:
we can narrow it down to two options. For example, if an individual has V = 0 and Z = 0, then
we know that their ZV =0

= 0, and they can either be never-takers or compliers. Similarly if an
individual has V = 0 and Z = 1 we know their ZV =0

= 1, but we don’t know whether they are
always-takers or defiers. These are therefore latent, meaning they are not directly observable.
Statisticians usually make a monotonicity assumption that there are no defiers. That is, no
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one does exactly the opposite of what they are assigned. It is called the monotonicity
assumption because the probability of treatment should increase with more encouragement.

3 Causal effect identification and estimation for instru-

mental variable analyses

Our goal is to estimate E[Y (Z = 1)−Y (Z = 0)∣compliers]. We had previously discussed how
to identify the ITT or intention-to-treat effect which is E[Y (V = 1) − Y (V = 0)] = E[Y ∣V =
1]−E[Y ∣V = 0]. We can use the old trick of conditioning and averaging among subpopulation
for example to obtain E[Y ∣V = 1] = E[Y ∣V = 1,always takers]P (always takers) + E[Y ∣V =
1,always takers]P (always takers) +E[Y ∣V = 1,never takers]P (never takers) +
E[Y ∣V = 1, compliers]P (compliers). Note that among never takers and always takers V
does nothing, for example E[Y ∣V = 1,always takers] = E[Y ∣always takers]. Also note that
we don’t include condition on V = 1 in the probabilities e.g. P (never takers∣V = 1) =
(never takers) since these are attributes that already exist in the population, and should
have nothing to do with the randomization of V .

Given these facts, it turns out that when we take the difference E[Y ∣V = 1] −E[Y ∣V =
0] = E[Y ∣V = 1, compliers]P (compliers) − E[Y ∣V = 0, compliers]P (compliers). If we divide
by P (compliers) we end up with E[Y ∣V = 1, compliers] −E[Y ∣V = 0, compliers] on the right
hand side which equals E[Y (Z = 1)∣compliers] −E[Y (Z = 0)∣compliers] since V translate to
Z directly since these are compliers. Note also for the left hand side that P (compliers) =
E[Z ∣V = 1] − E[Z ∣V = 0] since E[Z ∣V = 1] is the proportion that are always takers or
compliers and E[Z ∣V = 0] is the proportion of always takers since there are no defiers.
Therefore the CACE (causal average causal effect) is the intention to treat effect divided
by the causal effect of treatment assignment on treatment received. Thus, even if we don’t
know exactly who are the compliers, we can still estimate this effect. Note that the ITT
effect is an underestimate of CACE because some people assigned to treatment did not take
it if P (compliers) is less than 1 (noncompliance).

3.1 Instrumental variables in observational studies

Imagine V occurs naturally. Let’s say we have an observational study with very few variables
collected, so it would be difficult to make a no unmeasured confounders assumption and we
want to use an instrumental variables analysis.

One possible instrumental variable that has been proposed in the literature is calendar
time. Sometimes one treatment, A, is used much more often than another treatment, B
within a short period of time. Then V = 0 could be the pre-period of randomization to
treatment B whereas V = 1 could be the post-period of randomization to treatment A.

But does calendar time violate the exclusion restriction? This is why the calendar time
period where the change occurs should be short, since other factors can change the outcome
over time e.g., general treatments for the condition the treatments were meant to treat would
become better over time (hopefully).

Another popular instrumental variable is distance. For example V can be the differential
time difference from a NICU to a regular hospital, Z can be treatment at a NICU and Y
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can be mortality. For patients, V is then an encouragement either to be treated at a NICU
or a regular hospital.

Note that for these observational studies we still think about compliance.

4 Two stage least squares estimation

Recall ordinary least squares (OLS). Suppose we have some model Yi = β0 + β1Zi + ϵi. The
usual assumption is that treatment Zi and the error term ϵi are independent. However, if
there is confounding, for example people assigned to treatment have a higher error term,
then they will be correlated and OLS would fail.

In the first stage of Two stage least squares (2SLS) we first regress treatment received Z
on the instrumental variable V : Zi = α0+α1Vi+ϵi. We then obtain Ẑi = α̂0+α̂1Vi which is the
predicted value of Z given V . So instead of the actual treatment received of an individual,
we are getting, based solely on the instrumental variable, what we predict their treatment
would be.

In the second stage we regress outcome on fitted value from stage one, Ẑi: Yi = β0+β1Ẑi+ϵi.
By the exclusion restriction V is independent of Y given Z, since V only affects Y through
Z. So β1 is the estimate of the causal effect since β1 = E[Y (Ẑ = 1)] −E[Y (Ẑ = 0)] and the
first term on the right hand side is equal to β0 + β1 and the second term is equal to β0.

To interpret β1 lets first recall that the two values of Ẑ are α̂0 or α̂0 + α̂1, which if there
is some noncompliance are not equal to 0 or 1. Going from the former term to the latter is
essentially what occurs when we go from V = 0 to V = 1. Thus, the mean difference in the
intention to treat effect Ê[Y (V = 1)] − Ê[Y (V = 0)] occurs with a α̂1 change in Ẑ, in other
words if V changes from 0 to 1 then Ẑ changes by α̂1 units.

If we see a change in the mean of Y for a α̂1 unit change of Ẑ of the ITT effect, then for

a whole unit change of Ẑ we should see an effect of Ê[Y (V =1)]−Ê[Y (V =0)]
α̂1

. Then where does

that leave β1? This is equal to CACE = E[Y ∣V =1]−E[Y ∣V =0]
E[Z∣V =1]−E[Z∣V =0] since the denominator is exactly

α̂1.
2SLS is applicable for situations with many covariates or non-binary data such as a

continuous instrumental variable. All we would have to do is in the first stage regress Z on
V and covariates X, obtaining fitted values of Ẑ, then in the second stage regress Y on Ẑ
and X.

Sensitivity analyses on the exclusion restriction assumption and monotonicity assumption
should be done to ask, if V affects Y by some amount, would conclusion change, or if there
are some percentage of defiers, what percentage would there have to be for conclusions to
change, respectively.
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