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1 Introduction

I became interested in causal inference after noticing differences between causality in the
field of causal inference, and causality in pathogen transmission mechanistic models. I find
the definitions and formalities in causal inference, and statistics more generally, satisfying.

One of the most fun things about the history of statistics is how rich it is with interesting
anecdotes and case studies. I enjoyed listening to Prof. Susan Ellenberg’s recounting of its
history.1 It’s interesting to think about modern clinical trials only gaining traction in the
mid-twentieth century, and the human complications that arise when putting these designs
into practice. For instance, is it ethical to have placebo groups if the treatment has the
potential to save the life of the participant? At what points should trials stop if we think
the treatment is having a positive effect? When vaccines are used widely, and therefore
a rare bad health event coincidentally occurs shortly after a baby is vaccinated, what is
the best way to address, with scientific evidence, the concerns of a parent? What was also
interesting was hearing about the difference between an active control vs. a placebo control,
and how even studies where the treatment has a known effect may fail. By it’s very nature of
applying abstract theory to real-world situations, and encountering all sorts of complications,
the statistical literature is full of interesting human stories.

The following is adapted from module one of Prof. Jason Roy’s fantastic online Cours-
era course on causal inference https://www.coursera.org/learn/crash-course-in-causality.2 I
wanted to review the basics of causal inference for myself. I recall a professor in undergrad
saying that one should never underestimate the fundamentals. This is part one of five.

2 Preliminary definitions and assumptions

Suppose we are interested in the causal effect of some treatment Z on some outcome Y . For
example, z = 1 indicates an individual taking a vaccine against influenza and Z = 0 otherwise;
Y is the time until the individual is infected. We can notate Y (Z = 1) and Y (Z = 0) as
potential outcomes given treatment.

A counterfactual outcome is the outcome that would have been observed with the treat-
ment had been different. For example, if the treatment of an individual was Z = 0, then the
counterfactual outcome would be Y (Z = 1) and vice-versa. Before treatment assignment,
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any outcome is a potential outcome, but after the study there is an observed outcome and a
counterfactual outcome. It is normally assumed that counterfactual outcomes are the same
as potential outcomes.

It is important that there is clearly one treatment, and that there are no hidden treat-
ments in the mix. For example, we may be interested in the causal effect of BMI on some
health outcome. The problem is that there are many potential ways to achieve a particular
BMI value, which can lead to different outcomes. Similarly, some variables are simply im-
mutable, such as race. Because race is not manipulable, we cannot identify a causal effect
for it. These causal effects certainly exist, but are not easily identified within the causal
inference framework.

A causal effect is identified if there is a difference in Y (Z = 1) and Y (Z = 0). However,
for any individual we can only ever observe one of these potential outcomes. This is what
is known as the fundamental problem of causal inference. We get around the problem by
considering population-level causal effects rather than individual-level causal effects, where
Y (Z = 1) would be the averaged outcome of all individuals if all individuals were assigned
treatment Z = 1.

We should note that E[Y (Z = 1)−Y (Z = 0)] ≠ E[Y ∣Z = 1]−E[Y ∣Z = 0]. This is because
in reality there may be differences in the population that had z = 1 vs. z = 0; for example,
individuals at a higher risk for flu may be more likely to get a flu shot, so this may differ
from what would happen if all individuals were either assigned to Z = 1 or Z = 0. Generally,
if we are comparing two different populations, then we are not identifying a causal effect,
whereas we would be identifying the causal effect if we compare the same population where
the only difference is treatment.

3 Causal inference assumptions

These are:

• Stable Unit Treatment Value Assumption (SUTVA), which allows us to write the
potential outcomes for individual i in terms solely of the treatment individual i receives

– No interference: units do not interfere with each other, where the treatment of
one individual does not affect the outcome of another

– One version of treatment

• Consistency

– The potential outcome Y (Z) is equal to the observed outcome if the actual treat-
ment received is Z = z. In other words Y = Y (Z) if Z = z for all z.

• Ignorability (sometimes referred to as the no unmeasured confounders assumption)

– Given pre-treatment covariates X, who is treated (treatment assignment) is inde-
pendent from the potential outcomes (formally: Y (0), Y (1) ⊥⊥ Z ∣X). For instance,
maybe sicker individuals are assigned treatment more often than less sick indi-
viduals, and they are also more likely to have a bad outcome. In this case, who
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is treated Z is not independent of the potential outcomes (note that if treatment
assignment is randomized no matter the sickness of the individual we wouldn’t
have a problem). We are looking for: within each stratum of X (in this case
age) treatment Z is randomly assigned, so that potential outcomes within each
stratum are independent of treatment assignment.

• Positivity

– P (Z = z∣X = x) > 0;∀z and x. In other words, the probability of treatment
assignment is positive no matter your covariate values of X.

We can get from the observed outcome to the potential outcome through the following
proof: E[Y ∣Z = z,X = x] involves only observed data. E[Y ∣Z = z,X = x] = E[Y (z)∣Z =
z,X = x] by consistency. = E[Y (z)∣X = x] by ignorability.

If we want a marginal causal effect we can average over the distribution of X. Suppose
X is a single categorical variable, then E[Y (z)] = ∑xE[Y ∣Z = z,X = x]Pr(X = x). This
process is known as standardization, which involves stratifying then averaging. In other
words we obtain a treatment effect within each stratum then pool across stratum, weighting
by the probability (or size) of each stratum. We can follow this procedure with the real
data. As long as there is randomization of treatment assignment within each stratum, we
can identify a causal effect.

Standardization can be difficult if there are many X variables needed to achieve ignor-
ability, and if there are many empty cells of combinations of X variables. Because of this
difficulty, much work has been done on remedies such as matching, inverse probability of
treatment weighting, propensity scores, and instrumental variables.

4 Incident user and active comparator designs

Suppose we were interested in the effect of yoga on blood pressure. If we take a cross-section
of five people, we might find that two of them are currently practicing yoga and three are
not. However, there may be variable individual histories of whether they ever did yoga in
the past, which creates complications if we want to compare a group that does currently
practice yoga vs. doesn’t.

One way to get around this would be an incident user study design, where we restrict
the treated population to those newly initiating treatment. In this way, we would ask the
slightly different causal question of: for the population of individuals who have not practiced
yoga in the past, what is the causal effect of practicing yoga.

One last challenge is that although start of follow-up time of treated individuals is clear,
i.e., when they initiate yoga, it is less clear what the start of follow-up time is for the control.
In this case, we might want to have an active comparator control, such as Zumba, which
would also have a clear start of follow-up time. There is normally less confounding when
using an active comparator, but the causal question becomes more narrow. Finally, active
comparators may not be possible, or even what we are interested, so they don’t always have
to be used.

3



References

1 S. Ellenberg. People & perspectives: Susan ellenberg. https://www.youtube.com/watch?
v=aMkO5vezUcs.

2 J. Roy. A crash course in causality: Inferring causal effects from observational data. https:
//www.coursera.org/learn/crash-course-in-causality.

4

https://www.youtube.com/watch?v=aMkO5vezUcs
https://www.youtube.com/watch?v=aMkO5vezUcs
https://www.coursera.org/learn/crash-course-in-causality
https://www.coursera.org/learn/crash-course-in-causality

	Introduction
	Preliminary definitions and assumptions
	Causal inference assumptions
	Incident user and active comparator designs

